Evolutionary Optimization of Colebrook’s Turbulent Flow Friction Approximations
نویسندگان
چکیده
This paper presents evolutionary optimization of explicit approximations of the empirical Colebrook’s equation that is used for the calculation of the turbulent friction factor (λ), i.e., for the calculation of turbulent hydraulic resistance in hydraulically smooth and rough pipes including the transient zone between them. The empirical Colebrook’s equation relates the unknown flow friction factor (λ) with the known Reynolds number (R) and the known relative roughness of the inner pipe surface (ε/D). It is implicit in the unknown friction factor (λ). The implicit Colebrook’s equation cannot be rearranged to derive the friction factor (λ) directly, and therefore, it can be solved only iteratively [λ = f(λ, R, ε/D)] or using its explicit approximations [λ ≈ f(R, ε/D)], which introduce certain error compared with the iterative solution. The optimization of explicit approximations of Colebrook’s equation is performed with the aim to improve their accuracy, and the proposed optimization strategy is demonstrated on a large number of explicit approximations published up to date where numerical values of the parameters in various existing approximations are changed (optimized) using genetic algorithms to reduce maximal relative error. After that improvement, the computational burden stays unchanged while the accuracy of approximations increases in some of the cases very significantly.
منابع مشابه
“Evolutionary optimization of Colebrook’s turbulent flow friction approximations” by Dejan Brkić and Žarko Ćojbašić
متن کامل
Lambert W Function in Hydraulic Problems ∗
Darcy’s flow friction factor is expressed in implicit form in some of the relations such as Colebrook’s and have to be solved by iteration procedure because the unknown friction factor appears on both sides of the equation. Lambert W function is implicitly elementary but is not, itself, an elementary function. Implicit form of the Lambert W function allows us to transform other implicit functio...
متن کاملThe Effects of Shape Parameterization on the Efficiency of Evolutionary Design Optimization for Viscous Transonic Airfoils
The effect of airfoil shape parameterization on optimum design and its influence on the convergence of the evolutionary optimization process is presented. Three popular airfoil parametric methods including PARSEC, Sobieczky and B-Spline (Bezier curve) are studied and their efficiency and results are compared with those of a new method. The new method takes into consideration the characteristics...
متن کاملInvestigation on Turbulent Nanofluid Flow in Helical Tube in Tube Heat Exchangers
In this study, the thermal characteristics of turbulent nanofluid flow in a helical tube in the tube heat exchanger (HTTHE) were assessed numerically through computational fluid dynamics (CFD) simulation. The findings of both the turbulent models: realizable k-epsion (k-ε) and re-normalisation group (RNG) k-epsilon were compared. The temperature distribution contours show that realizable and RN...
متن کاملA Novel Similarity Solution of Turbulent Boundary Layer Flow over a Flat Plate
In this paper, the similarity solution of turbulent boundary layer flow on the flat plate with zero pressure gradients is presented. By employing similarity variables the governing partial differential equations are transformed to ordinary ones with inconsistent coefficients and solved numerically with the use of Runge–Kutta and shooting methods in conjunction with trial and error procedure. Fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017